Implementation of Torque Controller for Brushless Motors on the Omni-directional Wheeled Mobile Robot
نویسندگان
چکیده
The major issue for the wheeled mobile robot is the low level controller gains tuning up especially in the robot competition. The floor surface can be damaged by the robot wheels during the competition, therefore the surface coefficient can be changed over time. PI gains have to be tuned before every match along the competition. In this research, the torque controller is defined and implemented in order to solve this problem. Torque controller consists of a PI controller for the robot wheel’s angular velocity and a dynamic equation of brushless motor. The motor dynamics can be derived from the energy conservation law. Three different carpets, which have the different friction coefficients, are used in the experiments. The robot wheel’s angular velocity profiles are generated from the robot kinematics with different initial conditions. The output paths of the robot with the torque controller are compared with the output paths of the robot with regular PI controller when the same wheel angular velocity profiles are applied. The results show that the torque controller can provide a better robot path than the normal PI controller. Keywords— Torque Controller, Brushless Motor, Mobile Robot
منابع مشابه
Investigation on the Effect of Different Parameters in Wheeled Mobile Robot Error (TECHNICAL NOTE)
This article has focused on evaluation and identification of effective parameters in positioning performance with an odometry approach of an omni-directional mobile robot. Although there has been research in this field, but in this paper, a new approach has been proposed for mobile robot in positioning performance. With respect to experimental investigations of different parameters in omni-dire...
متن کاملExperimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملEffective Mechatronic Models and Methods for Implementation an Autonomous Soccer Robot
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensi...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملTrajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy
This paper addresses trajectory tracking of an omni-directional mobile robot (OMR) with three mecanum wheels and a fully symmetrical configuration. The omni-directional wheeled robot outperforms the non-holonomic wheeled robot due to its ability to rotate and translate independently and simultaneously. A kinematics model of the OMR is established and a model predictive control (MPC) algorithm w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.02271 شماره
صفحات -
تاریخ انتشار 2010